Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.
نویسندگان
چکیده
The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C₅H₄N₄) (adenine and guanine) and those based on pyrimidine (C₄H₄N₂) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent laboratory experiments and ab initio calculations have shown that the irradiation of pyrimidine in ices containing H₂O, NH₃, or both leads to the abiotic production of substituted pyrimidines, including the nucleobases uracil and cytosine. In this work, we studied the methylation and oxidation of pyrimidine in CH₃OH:pyrimidine, H₂O:CH₃OH:pyrimidine, CH₄:pyrimidine, and H₂O:CH₄:pyrimidine ices irradiated with UV photons under astrophysically relevant conditions. The nucleobase thymine was detected in the residues from some of the mixtures. Our results suggest that the abundance of abiotic thymine produced by ice photolysis and delivered to the early Earth may have been significantly lower than that of uracil. Insofar as the delivery of extraterrestrial molecules was important for early biological chemistry on early Earth, these results suggest that there was more uracil than thymine available for emergent life, a scenario consistent with the RNA world hypothesis.
منابع مشابه
Photosynthesis and photo-stability of nucleic acids in prebiotic extraterrestrial environments.
Laboratory experiments have shown that the UV photo-irradiation of low-temperature ices of astrophysical interest leads to the formation of organic molecules, including molecules important for biology such as amino acids, quinones, and amphiphiles. When pyrimidine is introduced into these ices, the products of irradiation include the nucleobases uracil, cytosine, and thymine, the informational ...
متن کاملNucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.
Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation...
متن کاملComment on "Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs".
Meinert et al (Reports, 8 April 2016, p. 208) reported the formation of prebiotic molecules, including ribose, in an interstellar ice analog experiment. We show that if their experimental procedure is accurately described, much or most of their products may have been formed during their analysis process, not in the parent ice.
متن کاملUltraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide
Hydrogen cyanide (HCN) has been identified in the gas phase of the interstellar medium as well as in the comae of several comets. Terrestrially, HCN is a key component in the synthesis of biologically important molecules such as amino acids. In this paper, we report the results of low-temperature (18 K) ice energetic processing experiments involving pure HCN and mixtures of HCN with H2O and NH3...
متن کاملFormation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices.
The detection of nucleobases in carbonaceous chondrites such as Murchison supports the scenario in which extraterrestrial organic molecules could have contributed to the origin of life on Earth. However, such large molecules have not been observed to date in astrophysical environments, in particular, comets and the interstellar medium (ISM). The physico-chemical conditions under which nucleobas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Astrobiology
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013